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1 Introduction

The notion of exponential family [2] was extended for families of Markov chains in an

asymptotic manner by Ito & Amari [10], and some variants have been proposed. The notion

of exponential family (e-family) of Markov kernels is the most important one among them. It

was first introduced by Nakagawa and Kanaya [6] in the one-dimensional case. Then, Nagaoka

[5] gave its established form, and Hayashi & Watanabe discussed it [4]. In [5], various concepts

in information geometry including dually flat structure, are extended for families of Markov

kernels. It is also remarkable that the notion does not need asymptotic setting.

On the other hand, notion of asymptotic exponential families of general stochastic processes

was introduced in [8] as an extension of Ito and Amari’s concept. Note that, only for asymp-

totic exponential families the Bayes mixture with Jeffreys prior asymptotically achieves the

stochastic complexity of Rissanen [7], which is the most important notion in the minimum

description length principle [3],

In this report, we show that both notions of exponential families of Markov sources are

equivalent to each other. It means that the form of e-family of Markov kernels is unique to

enjoy the same asymptotic properties of e-families as i.i.d. case.

2 Exponential Family of Markov Kernels

We review the notion of exponential family of Markov kernels, following [5]. Let X be a

finite set and let E be a subset of X 2. Assume that (X , E) is a strongly connected directed

graph, i.e. for all (x, y) ∈ X 2, there is a path from x to y. Let W(X , E) denote the family of
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transition probability matrices as

W(X , E) =
{
w : ∀(x, y) ∈ E , wxy > 0,

∑
z

wxz = 1, and ∀(x, y) ∈ X 2 \ E , wxy = 0
}
.

We also use notation w(y|x) to stand for wxy.

Assume that the Markov kernels wxy are parametrized by a parameter θ ∈ Rm as wxy =

wθ(y|x). If wθ(y|x) is in a form of

wθ(y|x) =

{
exp

(
C(xy) + θ · F (xy) +K+

θ (xy)−K−
θ (xy) + ψ(θ)

)
, if xy ∈ E ,

0, otherwise,
(1)

then the set M = {wθ} is referred to as an exponential family of Markov kernels, where

F (xy) = (F1(xy), ..., Fm(xy)) ∈ Rm, K+
θ (xy) = Kθ(y), K

−
θ (xy) = Kθ(x), for each (x, y) ∈ X 2,

Kθ ∈ RX , and ‘·’ represents inner product.
Similarly as the i.i.d. case, an e-family of Markov kernels can be realized as the normal-

ization of an affine space [5]. (See Section 2.6 of [1] for the i.i.d. case.) Now we introduce a

normalization function Φ : RE → W(X , E) by

Φ(F ) =

{
exp(F +K+ −K− − c), over E ,
0, over X 2 \ E

where c ∈ R, K ∈ RX , K+(xy) = K(y), and K−(xy) = K(x). This is well-defined, because

the following argument is possible. Note that c and K, which make Φ(F ) be an element of

W(X , E), essentially uniquely exist for each F ∈ RE , as discussed in [5]. This is shown as

follows. Let A = exp(F ) for xy ∈ E , A = 0 for xy ∈ X 2 \ E , and ν = exp(K). Then

Φ(F )(y|x) = A(xy)ν(y)

ν(x)ec
. (2)

To make Φ(F ) ∈ W(X , E), it is necessary and sufficient that
∑

y Φ(F )(y|x) = 1 for all x ∈ X ,

which is

∀x,
∑
y

A(xy)ν(y) = ecν(x). (3)

It is clear that ec is the Perron-Frobenius eigenvalue of the irreducible non-negative matrix

A(xy) and ν is its eigenvector, which uniquely exist. Define a linear subspace K̂ of RE

K̂ = {K̂ ∈ RE : ∃K ∈ RX ,∀xy ∈ E , K̂(xy) = K+(y)−K−(x)}.

For M ⊂ W(X , E), the inverse image of M by Φ is denoted as

Φ−1(M) = {logw + K̂ − c : w ∈ M, K̂ ∈ K̂, c ∈ R} ⊂ RE .

Note that logw is an element of RE .

Now, we show the following two lemmas characterizing the e-family of Markov kernels, which

are stated in [5].
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Lemma 1 Assume that F is an affine subspace of RE . Then Φ(F) is an e-family of Markov

kernels.

Proof: If F is an affine subspace of RE , we can denote its element as Fθ = θ ·F +F0, where

θ ∈ Rm, F = (F1, ..., Fm), and Fi ∈ RE for i = 0, 1, ...,m. Then, Φ(Fθ) = exp(F0 + θ · F +

K+
θ −K−

θ − c(θ)) over E . Hence Φ(F) is an e-family. This completes the proof.

Lemma 2 A family of Markov kernels M ⊂ W(X , E) is an e-family, iff Φ−1(M) is an affine

subspace of the linear space RE .

Proof: When Φ−1(M) is an affine space, then M is an e-family by Lemma 1.

Next, assumeM is an e-family. We can denote its element as wθ = exp(F0+θ·F+K̂θ−ψ(θ))}
over E by definition. Hence we have

Φ−1(M) = {F0 + θ · F + K̂θ − ψ(θ) + K̂ − c : θ ∈ Rm, K̂ ∈ K̂, c ∈ R}

= {F0 + θ · F + K̂ − c : θ ∈ Rm, K̂ ∈ K̂, c ∈ R},

which is an affine space. This completes the proof.

3 Asymptotic Exponential Family

We state the definition of an asymptotic exponential family, which is a refinement of the

one given in [8, 9]. Let xnm denote a string xmxm+1...xn ∈ Xn−m+1 (m ≤ n) and xn a string

xn1 . For a parametric model S = {pθ(xn|x01−k) : θ ∈ Θ ⊂ Rm}, assume that the probability

density function is written as

pθ(x
n|x01−k) = exp

(
n
(
θ · V (xn1−k) + C(xn1−k)− ψ(θ)

)
+ Uθ(x

n
1−k)

)
, (4)

where V = (V1, ...Vm), Vi, Uθ ∈ RXn+1

, for n = 0, 1, · · · . Here, we suppose Uθ(x
0
1−k) = 0 and

pθ(x0|x01−k) = 1. Assuming an appropriate distribution of x0k−1, define

η = η(n) = EθV (xn1−k).

We expect that η has similar properties of expectation parameter of ordinary exponential

families. Further define

Hn = conv({V (xn1−k) : x
n
1−k ∈ Xn+k}),

H =
∞∪
k=1

∞∩
t=k

Ht.

Then, η(n) ∈ Hn holds.
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Assume that, for every compact set L interior to H◦,

lim
n→∞

max
ij

max
θ:η∈L

max
xn
1−k:V ∈L

1

n

∣∣∣∂2Uθ(x
n
1−k)

∂θi∂θj

∣∣∣ = 0. (5)

Then, we call S an asymptotic exponential family.

Remark: For i.i.d. case, Θ is usually defined as the set of θ for which ψ(θ) is finite, and is

known to be a convex set. In particular for a finite X , we can assume that Θ is Rm.

Under the condition (5), twice integrating

1

n

∂2Uθ(x
n
1−k)

∂θi∂θj

with respect to θ over L for each xn1−k, we have

lim
n→∞

max
i

max
θ:η∈L

max
xn
1−k:V ∈L

∣∣∣ 1
n

∂Uθ(x
n
1−k)

∂θi
− V ′

i (x
n
1−k)

∣∣∣ = 0,

lim
n→∞

max
θ:η∈L

max
xn
1−k:V ∈L

∣∣∣ 1
n
Uθ(x

n
1−k)− (θ · V ′(xn1−k) + C ′(xn1−k))

∣∣∣ = 0,

where V ′(xn1−k) and C
′(xn1−k) are certain functions of xn1−k. Letting

Ũθ(x
n
1−k) = nUθ(x

n
1−k)− n(θ · V ′(xn1−k) + C ′(xn1−k))

Ṽ (xn1−k) = V (xn1−k) + V ′(xn1−k)

C̃(xn1−k) = C(xn1−k) + C ′(xn1−k),

we have

pθ(x
n|x01−k) = exp

(
n
(
θ · Ṽ (xn1−k) + C̃(xn1−k)− ψ(θ)

)
+ Ũθ(x

n
1−k)

)
, (6)

for which

lim
n→∞

max
θ:η∈L

max
xn
1−k:V ∈L

1

n
|Ũθ(x

n
1−k)| = 0, (7)

lim
n→∞

max
i

max
θ:η∈L

max
xn
1−k:V ∈L

1

n

∣∣∣∂Ũθ(x
n
1−k)

∂θi

∣∣∣ = 0. (8)

lim
n→∞

max
ij

max
θ:η∈L

max
xn
1−k:V ∈L

1

n

∣∣∣∂2Ũθ(x
n
1−k)

∂θi∂θj

∣∣∣ = 0

hold. That is, by rearranging the terms in (4), we can assume (7) and (8), which does not

break generality. Hence, hereafter we assume

lim
n→∞

max
θ:η∈L

max
xn
1−k:V ∈L

Uθ(x
n
k−1) = 0 (9)

lim
n→∞

max
i

max
θ:η∈L

max
xn
1−k:V ∈L

1

n

∣∣∣∂Uθ(x
n
1−k)

∂θi

∣∣∣ = 0. (10)

in the definition of asymptotic exponential families.
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Some Property of Asymptotic Exponential Families

We can show the following for asymptotic e-families:

lim
n→∞

max
xn
1−k:V ∈L

|Ĵ(θ̂, xn1−k)− Jn(θ̂)| = 0, (11)

where Ĵ and Jn is the empirical Fisher information and Fisher information defined as

Ĵij(θ̂, x
n
1−k) =

−1

n

∂2 log pθ(x
n|x01−k)

∂θi∂θj
,

Jn(θ) = EθĴ(θ, x
n
1−k).

For the expectation, we assume an appropriate distribution p
(0)
θ for the initial string x01−k.

Note that Ĵ(θ̂, xn1−k)− Jn(θ̂) is essentially the exponential curvature of the model [1].

4 Equivalency of E-Family of Markov kernels and Asymptotic

E-Family

Here we assume k = 1 to consider the 1st order Markov models with alphabet X =

{1, 2, ..., D}. For S = {pθ(xn|x0) : θ ∈ Rm}, assume pθ(x
n|x0) is defined by Markov ker-

nels in M = {wθ(y|x) : θ ∈ Rm}:

pθ(x
n|x0) =

n∏
t=1

wθ(xt|xt−1). (12)

Further, in taking expectation, we assume that the initial probability distribution is given as

the stationary distribution determined by wθ(y|x).
The following is our main result.

Theorem 1 A Markov model S = {pθ(xn|x0)} is an asymptotic exponential family, iff the

M = {wθ(y|x)} is an exponential family of Markov kernels.

We prove it based on a series of lemmas.

As preliminaries, we introduce some terminology for strings. For a string xn, if xt = x0 and

xt−1xt ∈ E for all t : 2 ≤ t ≤ n, then xn is called a loop for E , or simply a loop. For a path xn,

if {xt−1xt : 2 ≤ t ≤ n} = E , then xn is said to be complete for E , or simply complete. Given

two paths xα and yβ with xα = y1, we can connect them to obtain xα−1yβ = xαyβ2 , for which

we denote as
xα • yβ = xα−1yβ(= xαyβ2 ).

Using this symbol, the infinite repetition of a loop xn can be denoted as

xn • xn • xn • · · · = xn−1xn−1xn−1 . . . .
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For each xy ∈ E , define

τ(xy|xn0 ) =
#{t : xt−1xt = xy, 1 ≤ t ≤ n}

n
.

This is called a Markov type of a string xn0 . Since
∑

xy τ(xy|xn0 ) = 1, a type belongs to the

probability simplex of order m2 − 1.

We give some lemmas to show the main result.

Lemma 3 For S = {pθ(xn|x0)}, assume that pθ is written as (4) with k = 1. Let {θ̄(j)} be

the normal basis of Rm, that is, θ̄
(j)
i = δij . Then, the following holds.

logwθ(xt|xt−1) =
∑
i

θi log
wθ̄(i)(xt|xt−1)

w0(xt|xt−1)
+ logw0(xt|xt−1)− ψ̃(θ) + kθ(xt−1xt), (13)

where kθ is a certain element of RE for each θ, and

ψ̃(θ) = ψ(θ)−
∑
i

θi(ψ(θ̄
(i))− ψ(0))− ψ(0).

Proof: Let fθ(xy) = logwθ(y|x). Then from (4), we have

n∑
t=1

fθ(xt−1xt) = log
n∏

t=1

wθ(xt|xt−1) = nθ · V (xn0 ) + nC(xn0 ) + Uθ(x
n
0 )− nψ(θ), (14)

which is

nθ · V (xn0 ) + nC(xn0 ) =
n∑

t=1

fθ(xt−1xt)− Uθ(x
n
0 ) + nψ(θ).

Letting θ = 0, we have

nC(xn0 ) =

n∑
t=1

f0(xt−1xt)− U0(x
n
0 ) + nc0, (15)

where c0 = ψ(0). Further, letting θ = θ(i) (i = 1, ...,m), where θ
(i)
j = δij , we have

n(Vi(x
n
0 ) + C(xn0 )) =

n∑
t=1

fθ(i)(xt−1xt)− Uθ(i)(xn0 ) + nci, (16)

where ci denotes ψ(θ
(i)). Define hi = −Uθ(i) +U0. Then, recalling fθ(xy) = logwθ(y|x), from

(15) and (16),

nVi(x
n
0 ) =

n∑
t=1

log
wθ̄(i)(xt|xt−1)

w0(xt|xt−1)
+ hi(x

n
0 ) + n(ci − c0). (17)
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Plugging in (15) and (17) to (14), we have

wθ(xt|xt−1) = log
pθ(x

t|x0)
pθ(xt−1|x0)

=
∑
i

θi log
wθ̄(i)(xt|xt−1)

w0(xt|xt−1)
+ logw0(xt|xt−1)− ψ̃(θ) + uθ(x

t
0)− uθ(x

t−1
0 ), (18)

where ψ̃(θ) = ψ(θ)−
∑

i θi(ci− c0)− c0, and uθ =
∑

i θihi+Uθ −U0. Since this is an identity,

uθ(x
t
0)− uθ(x

t−1
0 ) is a function of xt−1xt. By letting kθ(xt−1, xt) denote it, we have the claim

of the Lemma. The proof is completed.

By Lemma 3, when the asymptotic e-family pθ(x
t|x0) is defined by Markov kernels, we have

Vi(x
n
0 ) =

1

n

n∑
t=1

log
wθ̄(i)(xt|xt−1)

w0(xt|xt−1)
=

∑
xy

τ(xy|xn0 ) log
wθ̄(i)(y|x)
w0(y|x)

.

Note that this defines a linear mapping from the probability simplex ∆D2−1 ⊂ RD2

to Rm.

Let g denote it:
V (xn0 ) = g(τ(·|xn0 )).

Then we can see Hn = H = g(∆D2−1).

Lemma 4 Assume that a Markov model S = {pθ(xn|x0)} is an asymptotic exponential

family with (9) and (10). Then, for every θ ∈ Rm, and for every sequence {xt}t≥0 which is

the infinite repetition of a complete loop for E , the following holds.

lim
n→∞

1

n
|Uθ(x

n
0 )| = 0.

Proof: Let x̄α0 be a complete loop Suppose that {xt}t≥0 is the infinite repetition of a complete

loop x̄α0 . Then, we have

∀xy ∈ E , lim
n→∞

τ(xy|xn0 ) = τ(xy|xα0 ) > 0.

Since xα0 is a complete loop, τ(·|xα0 ) is in the interior of ∆D2−1 and V (xα0 ) ∈ H◦. Let L be a

compact subset of H◦ such that V (xα0 ) = g(τ(·|xα0 )) ∈ L◦. Then, for all large n, V (xn0 ) ∈ L

holds. Hence, by (9) we have obtained the claim of the Lemma. The proof is completed.

Lemma 5 If {U(xn0 )}n satisfies

U(xn0 ) =
n∑

t=1

k(xt−1, xt), (19)

lim
n→∞

1

n
|U(xn0 )| = 0 (20)

hold for every sequence {xt}t≥0 which is the infinite repetition of a complete loop for E . Then,
the following holds.

∀xy ∈ E , k(x, y) = κ(y)− κ(x).
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Proof: Suppose that {xt} is the infinite repetition of a complete loop x̄α0 . Then, U(xn0 ) = o(n)

holds by the assumption. It implies U(xα0 ) = 0 for any complete loop xα0 , since we have

U(xMα
0 ) =

M−1∑
N=0

α+Nα∑
t=1+Nα

k(xt−1, xt) =M
α∑

t=1

k(xt−1, xt) =MU(xα0 ).

Now, to each (x, y) ∈ X 2, assigning a path from x to y, and let Π(x, y) denote it. Suppose

that Π(z, y) with a fixed z is a complete path for all y. Then for any path xn0 (n ≥ 0),

Π(z, x0) • xn0 • Π(xn, z) is a complete loop. In particular for n = 1, Π(z, x0) • Π(x0, z) is a

complete loop. Hence

∀x0 ∈ X , U(Π(z, x0) •Π(x0, z)) = 0,

which yields

∀x0 ∈ X , U(Π(z, x0)) = −U(Π(x0, z)). (21)

For general n ≥ 1, we have

∀xn0 ∈ Xn+1, U(Π(z, x0) • xn0 •Π(xn, z)) = 0, (22)

which yields

∀xn0 ∈ Xn+1, U(xn0 ) = −U(Π(z, x0))− U(Π(xn, z)) = U(Π(z, xn))− U(Π(z, x0)),

where we used (21) for the last equality. For the fixed z, defining

∀x ∈ X , κ = U(Π(z, x))

we have
n∑

t=1

k(xt−1, xt) = U(xn0 ) = κ(xn)− κ(x0),

which implies
∀xy ∈ E , k(x, y) = κ(y)− κ(x).

The proof is completed.

Since Lemmas 3, 4 and 5, an asymptotic exponential family is an exponential family of

Markov kernels. For the converse, we show thw following lemma.

Lemma 6 If a family of Markov kernels {wθ} is an exponential family of Markov kernels,

then the model {pθ(xn|x0)} is an asymptotic exponential family.

Proof: By the assumption we have

logwθ(y|x) = θ · F (y|x) + C(xy)− ψ(θ) + κθ(y)− κθ(x).
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Hence

logwθ(x
n|x0) =

n∑
t=1

(
θ · F (xt−1xt) + C(xt−1xt)− ψ(θ)

)
+ κθ(xn)− κθ(x0).

Recall that exp(κθ(x)) is the Perron-Frobenuis eigenvector for the non-negative matrix

Axy =

{
exp(θ · F (y|x) + C(xy)), for xy ∈ E ,
0, otherwise.

Hence, exp(κθ(x)) is a rational function of positive entries of A, which are of class C∞ over L

and bounded from below by a positive number. Hence

∂2(κθ(xn)− κθ(x0))

∂θi∂θj

is bounded over L. The proof is completed
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