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The following is some extension of the inequalities given in [1].

Let p(y|θ) = exp(θty − ψ(θ)) be a probability density function of an exponential

family, where y is a random variable over Y ⊆ ℜk and θ is the natural parameter.

Let Θ denote the range of θ.

Using p(y|θ), define a model with hidden variable q(x|θ) as

q(x|θ) =
∫
κ(x|y)p(y|θ)dy

where κ(x|y) is a conditional probability density function of x given y. Let θ̂ be the

maximum likelihood estimate of θ for q(x|θ) given xn, that is,

q(xn|θ̂) = max
θ
q(xn|θ).

Let Ĵ(θ, xn) denote the empirical Fisher information of θ for q(xn|θ):

Ĵij(θ, x
n) =

−1

n

∂2 log q(xn|θ)
∂θi∂θj

.

Let I(θ) denote the Fisher information of θ for p(x|θ):

Iij(θ) = −Eθ
∂2 log p(x|θ)
∂θi∂θj

=
∂2ψ(θ)

∂θi∂θj
.

Lemma 1 The following holds.

∀xn, ∀θ, 1

n
log

q(xn|θ̂)
q(xn|θ)

≤ D(p(·|θ̂)|p(·|θ)) (1)

and

∀θ ∈ Θ, Ĵ(θ, xn) ≤ I(θ) (2)
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where D(p(·|θ̂)|p(·|θ)) denotes the Kullback-Leibler divergence from p(·|θ̂) to p(·|θ).
In particular, when p(y|θ) is the Bernoulli model, the following holds

1

n
log

q(xn|θ̂)
q(xn|θ)

≤ D(p(·|θ̂)|p(·|θ)) = log
∏
y∈Y

η̂
nη̂y
y

η
nη̂y
y

,

where ηy = p(y|θ) and η̂y = p(y|θ̂).

Proof: Note that

q(xn|θ) =
n∏

t=1

∫
κ(xt|yt)p(yt|θ)dyt

=

∫ ∏
t

κ(xt|yt)p(yt|θ)dyn =

∫
κ(xn|yn)p(yn|θ)dyn.

We have

q(xn|θ)
q(xn|θ′)

=

∫
κ(xn|yn)p(yn|θ)dyn∫
κ(xn|yn)p(yn|θ′)dyn

=

∫
p(yn|θ)
p(yn|θ′)

κ(xn|yn)p(yn|θ′)∫
κ(xn|zn)p(zn|θ′)dzn

dyn.

Define q(yn|xn, θ′) by

q(yn|xn, θ′) = κ(xn|yn)p(yn|θ′)∫
κ(xn|zn)p(zn|θ′)dzn

,

which is the posterior distribution of yn given xn provided xn is drawn from q(xn|θ′).
Using it, we can write

q(xn|θ)
q(xn|θ′)

=

∫
q(yn|xn, θ′) p(y

n|θ)
p(yn|θ′)

dyn.

Then by Jensen’s inequality, we have

1

n
log

q(xn|θ)
q(xn|θ′)

≥ 1

n

∫
q(yn|xn, θ′) log p(yn|θ)

p(yn|θ′)
dyn. (3)

Let f(θ, θ′) denote the left side, and g(θ, θ′) the right side. Then, we have

∀θ, θ′ ∈ Θ, f(θ, θ′)− g(θ, θ′) ≥ 0, (4)

where equality holds when θ = θ′. Hence, Hessian of the left side is semi positive-

definite. That is, the matrix whose ij entry is

∂2 log f(θ, θ′)

∂θi∂θj
− ∂2 log g(θ, θ′)

∂θi∂θj
(5)
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is semi positive definite. Note that

g(θ, θ′) = θη̄t − ψ(θ)− (θ′η̄t − ψ(θ′)), (6)

where

η̄ =
1

n

∫
q(yn|xn, θ′)

n∑
t=1

ytdy
n.

From (6), we have

−∂
2 log g(θ, θ′)

∂θi∂θj
=
∂2ψ(θ)

∂θi∂θj
= Iij(θ).

Hence, semi positive-definiteness of (5) implies

∀θ ∈ Θ, Ĵ(θ, xn) ≤ I(θ),

Plugging in θ̂ to θ′ in (4) and noting f(θ, θ̂) ≤ 0, we have

∀θ ∈ Θ, 0 ≥ f(θ, θ̂) ≥ g(θ, θ̂), (7)

where both inequality hold as equality, when θ = θ̂. That is,

g(θ, θ̂) ≤ g(θ̂, θ̂) = 0.

Together with (6) the following holds

g(θ, θ̂) = θη̄t − ψ(θ)− (θ̂η̄t − ψ(θ̂)) ≤ θ̂η̄t − ψ(θ̂)− (θ̂η̄t − ψ(θ̂)) = 0, (8)

which implies η̄ = η̂. Here η̂ denotes the coo responding value of expectation param-

eter η to θ̂.

Note that
g(θ, θ̂) = −D(p(·|θ̂)|p(·|θ)),

where D(p(·|θ̂)|p(·|θ)) is the Kullback-Leibler divergence from p(y|θ̂) to p(y|θ) defined
as

D(p(·|θ̂)|p(·|θ)) =
∫
p(y|θ̂) log p(y|θ̂)

p(y|θ)
dy.

Hence from (3), we have

1

n
log

q(xn|θ̂)
q(xn|θ)

≤ D(θ̂|θ). (9)
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