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ABSTRACT

Consider universal data compression: the length l(xn)
of sequence xn ∈ An with finite alphabet A and length
n satisfies Kraft’s inequality over An, and − 1

n log Pn(xn)
Qn(xn)

almost surely converges to zero as n grows for the Qn(xn) =
2−l(xn) and any stationary ergodic source P . In this pa-
per, we say such a Q is a universal Bayesian measure. We
generalize the notion to the sources in which the random
variables may be either discrete, continuous, or none of
them. The previous work by Ryabko was applied only
to the case that a density function exists, and an additio-
nal constraint on P was required. The universal Bayesian
measure constructed in this paper has many applications
to infer relation among random variables, and extends the
application area of the minimum description length prin-
ciple.

1. SUMMARY

Suppose we wish to know if discrete random variables
X,Y are independent (X ⊥⊥ Y ) given n pairs of ex-
amples {(xi, yi)}ni=1 emitted by (X,Y ). If the proba-
bilities of xn = (x1, · · · , xn), yn = (y1, · · · , yn), and
(xn, yn) are expressed by Pn

X(xn|θX), Pn
Y (y

n|θY ), and
Pn
XY (x

n, yn|θXY ), respectively, using unknown parame-
ters θX , θY , θXY , one way to deal with this problem is to
decide X ⊥⊥ Y if and only if

pQn
X(xn)Qn

Y (y
n) ≥ (1− p)Qn

XY (x
n, yn) ,

where p is the prior probability of X ⊥⊥ Y , and the three
values are defined by

Qn
X(xn) :=

∫
Pn(xn|θX)wX(θX)dθX ,

Qn
Y (y

n) :=

∫
Pn(yn|θY )wY (θY )dθY ,

Qn
XY (x

n, yn) :=

∫
Pn(xn, yn|θXY )wXY (θXY )dθXY (1)

using weights wX , wY , wXY over the parameters θX , θY ,
θXY , respectively.

To this end, let A be the finite set in which X takes
values. There are many options of QX such that∑

xn∈An

Qn
X(xn) ≤ 1 . (2)

For example1, Qn
X(xn) = |A|−n for xn ∈ An satisfies the

condition. However, such a QX cannot be an alternative
of P for large n because Qn

X does not converges to Pn in
any sense. On the other hand, if we choose wX(θX) ∝∏

x∈A θ
−a[x]
x with constants (a[x] =

1

2
)x∈A (Krichevsky-

Trofimov [3]), then the quantity − 1
n logQn

X(xn) almost
surely converges to its entropy H(θX) for any indepen-
dent and identically distributed (i.i.d) source Pn(xn|θX) =∏

x∈A θ
−c[x]
x with parameters θ = (θx)x∈A and frequen-

cies (c[x])x∈A in xn ∈ An [6]. Furthermore, the Shannon-
McMillian-Breiman theorem [2] states that

− 1

n
logPn(xn|θX) → H(θX)

almost surely for any stationary ergodic source θX , so that
almost surely

1

n
log

Pn
X(xn)

Qn
X(xn)

→ 0 (3)

if we write Pn(xn|θX) by Pn
X(xn). In this paper, we say

such a QX satisfying (2)(3) to be a universal Bayesian me-
asure associated with finite set A. From the above discus-
sion, we can say that a universal Bayesian measure exists
for finite sources.

However, what if X,Y are arbitrary without assuming
they are discrete? Recently, for random variable X such
that its density function fX exists, Boris Ryabko [5] pro-
ved that there exists gX such that∫

xn∈Rn

gnX(xn) ≤ 1

and
1

n
log

fn
X(xn)

gnX(xn)
→ 0 . (4)

for any fX satisfying a condition. The estimation is ba-
sed on a specific sequence of histograms: let A0 = {A},
and Aj+1 is a refeinment of Aj , where A is the range
of X; for each j = 1, 2, · · · , we estimate the density
function fn

j (x
n) based on each histogram Aj ; and if we

obtain gnj (x
n) as the estimation for j = 1, 2, · · · , then

we obtain the final estimation gn(xn) =
∑

j wjg
n
j (x

n),
where wj > 0 and

∑
j wj = 1. But the estimation de-

pends on the specific {Aj} and requires D(fX ||fj) → 0

1|A| denotes the cardinality of set A.
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as j → ∞. Therefore, sufficient prior information is re-
quired.

In addition, in order to decide whether X ⊥⊥ Y or not
is made, we need to construct Bayesian measures QXY

and gXY for two variables X,Y extending QX and gX
for one variable X .

We admire Ryabko’s original work [5], and admit that
the basic idea was already there. However, we need to
seek further generalizations for practical development of
the theory. In this paper, we

1. remove the constraint that X should be either dis-
crete or continuous to obtain a general form of uni-
versality containing (3)(4) as special cases;

2. remove the condition that Ryabko [5] posed; and

3. construct universal measures for more than one va-
riables,

so that we establish that a universal Bayesian measure un-
conditionally exists for any stationary ergodic random va-
riable which may be either discrete, continuous, or none
of them. Once we can deal with universal Bayesian me-
asures for more than one random variables, we can infer
relation among them from given examples.

For simplicity, in this paper, we assume that the un-
derlying source is i.i.d. although the discussion will hold
for stationary ergodic sources.

Let us state the main results without proof. Let B be
the entire Borel sets of R. Let µX(D) := P (X ∈ D)
for D ∈ B, and ηX a σ-finite measure, i.e. there exists
{Aj} such that Aj ∈ F , ∪jAj = Ω and ηX(Ai) < ∞ for
measure space (Ω,F), and we assume2 µX ≪ ηX , i.e.,
ηX(D) = 0 =⇒ µX(D) = 0 for any D ∈ B.

Theorem 1 There exists a νnX ≪ ηnX such that νnX(An) ≤
1 and with probability one as n → ∞

1

n
log

dµn
X

dνnX
(xn) → 0 (5)

We notice that the Radon-Nikodym derivative is ex-
pressed by the ratio

dµn
X

dνnX
(xn) =

dµn
X

dηnX
(xn)/

dνnX
dηnX

(xn)

and that the density function
dµn

X

dηnX
(xn) in the generalized

sense is estimated by constructing the quanity
dνnX
dηnX

(xn).

If ηX is the Lebesgue measure of R, then the result re-

duces to Ryabko’s result fX =
dµn

X

dηnX
(xn) and gX =

dνnX
dηnX

(xn). However, we have successfully removed the

condition
D(fX ||fj) → 0 as j → ∞.

In a similar way, let µY (D) := P (Y ∈ D) for D ∈ B,
and ηY a σ-finite measure, and we assume µX ≪ ηX .
Furthermore, Let3 µXY (D×D′) := P (X ∈ D,Y ∈ D′)

2We read that µX is absolutely continuous w.r.t. ηX .
3D ×D′ denotes the Cartesian product of sets D,D′.

for D,D′ ∈ B, and ηXY the product measure of ηX , ηY .
Let B be the range of Y .

Theorem 2 There exists a νnXY ≪ ηnXY such that νnXY (A
n×

Bn) ≤ 1 and with probability one as n → ∞

1

n
log

dµn
XY

dνnXY

(xn, yn) → 0 (6)

The results in this paper are rather theoretical but con-
tain many applications such as

1. Bayesian network structure learning [7, 8],

2. a variant of the Chow-Liu algorithm learning a fo-
rest given examples [7, 9] .

In fact, in any database, both discrete and continuous fields
are present. Then, we need to find dependency among
those attributes. However, the existing results only de-
alt with either only discrete data or only continuous data.
This paper deals with the most general and realistic cases.

For contributions to statistics, constructing such a uni-
versal Bayesian measure means establishing a general form
of Bayesian Information Criteria (BIC). Suppose we have
a countable number of models m = 1, 2, · · · each of which
expresses a relation among random variables. If we con-
struct a universal Bayesian measure q(xn|m) w.r.t. model
m given data xn, then we can select m such that − log p(m)−
log q(xn|m) is minimized, where p(m) is the prior proba-
bility of model m. In fact, the measure applies to all the
cases that BIC/MDL applied thus far.
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