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Abstract— We introduce a notion of ‘relative redundancy’
for universal data compression and propose a universal code
which asymptotically achieves the minimax value of the rel-
ative redundancy. The relative redundancy is a hybrid of re-
dundancy and coding regret (pointwise redundancy), where
a class of information sources and a class of codes are as-
sumed. The minimax code for relative redundancy is an
extension of the modified Jeffreys mixture, which was intro-
duced by Takeuchi and Barron and is minimax for regret.

Keywords— universal coding, redundancy, regret, Bayes
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1 Introduction

We introduce a notion of ‘relative redundancy’ for uni-
versal data compression and sequential prediction, and
propose procedures which asymptotically achieve the
minimax value of the relative redundancy.

For universal data compression, the notion of re-
dundancy, which is the difference between the expected
code length of the code in concern and the expected
code length of the Shannon code defined by the true
source, has been often used as a criterion. On the other
hand these days, there is a different criterion called ‘re-
gret’ or ‘pointwise redundancy’, for which any true in-
formation source is not assumed [10]. Instead, a class of
codes, which is the class of competitors for the code in
concern, is assumed. Given a data sequence, the regret
of a code is defined as the difference between the code
length by the code in concern and the code length by
the hindsight best code for the data sequence among
the assumed class of codes. The relative redundancy is
a hybrid of those two notions of redundancy.

For the relative redundancy, we assume both a class
of sources and a class of codes. (In the case of ordinary
redundancy, the both are same to each other.) The rel-
ative redundancy is the difference between the expected
code length of the code in concern and the shortest ex-
pected code length achieved by a code among the as-
sumed class of codes, where expectation is taken with
respect to the true source, an element of the class of
sources. We are especially interested in the case that
the class of sources is non parametric and properly
includes the class of codes. This setting requires the
codes to be robust.

When extending the notion of redundancy as the
above, the minimax codes for traditional redundancy
obtained by Bayes procedure with Jeffreys prior [5, 6,
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13] are no longer minimax. Similarly, the minimax
codes for regret obtained by normalizing maximum
likelihood [10, 9] or Bayes procedures [14, 11, 4, 12]
are not minimax. Takeuchi and Barron [12] showed
that the minimax codes for redundancy are not mini-
max for the regret in usual cases and they obtained a
minimax code, which are a mixture of enlarged class
of codes. This enlargement is obtained by using the
difference between the Fisher information and the em-
pirical Fisher information. Usually, the above code is
not minimax for our relative redundancy and we need
another modification. The minimax code for the rel-
ative redundancy we propose is a mixture over an en-
larged class of codes, which is obtained by utilizing
the difference between the empirical covariance of score
functions and the Fisher information, adding the differ-
ence between the Fisher information and the empirical
Fisher information. It might be interesting that the
value of the asymptotic minimax relative redundancy
is same as that of the asymptotic minimax redundancy
upto constant order.

In the field of computational learning theory, this
kind of robust setting was proposed for the batch learn-
ing scenario and is known as ‘agnostic PAC (Probably
Approximate Correct) learning model’ [8]. Also, sim-
ilar setting is used for the problem of sequential pre-
diction [15], where general loss functions rather than
code length are used. Our problem with the relative
redundancy can be thought of as a special case of that,
though any minimax procedures upto constant order
were not known to date.

2 Relative Redundancy

Let X be a measurable space and ν be a reference mea-
sure on X . We define ν(dxn) def=

∏n
t=1 ν(dxt). We refer

to p as the density of a stochastic process, if p satisfies∫
p(x1)ν(dx) = 1 and

∫
p(xn+1)ν(dxn+1) = p(xn).

For now we assume that X is discreet and ν({x}) =
1 for x ∈ X . Let q be a density of stochastic pro-
cess. We can construct a code for the set of data
Xn whose code length is given by − log q(xn). Here,
log is the natural logarithm. We measure code length
by ‘nat’. Conversely, when there exists a uniquely
decodable code for Xn with code length l(xn), then∫

exp(−l(xn))ν(dxn) ≤ 1 (Kraft’s inequality) holds.
Hence, we refer to the density q as a code. We let
C be a class of codes. We assume that C is a smooth
parametric class: C

def= {p(·|θ) : θ ∈ Θ ⊂ <d}. The
circumstances for general X and ν are similar.

Let S be a certain class of densities of stochastic



processes. We assume that data sequence xn ∈ Xn is
drawn from a certain p ∈ S, i.e. we refer to S as the
class of information sources.

Let r be the true source, i.e. let r be an element of
S. Let q be a code. Define the relative redundancy of
the code q with respect to the true source r and the
class of codes C as

Rn(q, r, C) def= Er log
1

q(xn)
− inf

p∈C
Er log

1
p(xn)

.

Define the worst case relative redundancy of q for the
pair (S, C) as

Rn(q, S, C) def= sup
r∈S

(
Er log

1
q(xn)

− inf
p∈C

Er log
1

p(xn)

)
.

When S equals C, the relative redundancy coincides
with the ordinary redundancy. Finally, the minimax
relative redundancy for the pair (S, C) is defined as

R̄n(S, C) def= inf
q

sup
r∈S

(
Er log

1
q(xn)

− inf
p∈C

Er log
1

p(xn)

)
.

The above definition is valid for general classes of
stochastic processes, but hereafter, we restrict C and S
to classes of i.i.d. processes, i.e. we assume that p(xn) =∏n

t=1 p(xt) for p ∈ C ∪ S.
In that case, it is known that R̄n(C, C) =

(d/2) log(n/2πe) + log CJ(Θ) + o(1) holds [5, 6, 13].
Here, o(1) → 0 and CJ(Θ) def=

∫
Θ

√
detJ(θ)dθ, where

J(θ) is the Fisher information matrix defined as

Jij(θ)
def= Eθ(−∂2 log p(x|θ)

∂θi∂θj
).

In this paper, we show that R̄n(S, C) =
(d/2) log(n/2πe) + log CJ(Θ) + o(1) still holds
for fairly general i.i.d. classes of codes C.

We describe the definition of minimax regret r̄ for
reference, where Wn is a subset of Xn:

r̄n(Wn, C) def= inf
q

sup
xn∈Wn

(
log

1
q(xn)

− inf
p∈C

log
1

p(xn)

)
.

For this, it is known [9, 14, 11, 4, 12, 3] that r̄n(Wn, C)
= (d/2) log(n/2π) + log CJ(Θ) + o(1) , where Wn =
{xn : θ̂(xn) ∈ Θ} and θ̂(xn) is the maximum likelihood
estimate given xn.

3 Minimax Code

Let P be a set of all i.i.d. processes and C be a smooth
parametric subset of P: C = {p(·|θ) : θ ∈ Θc ⊂ Θ},
where Θc is compact and included in Θ◦. We refer to
C as a class of codes. We define θ̃ for r ∈ P as

θ̃ = θ̃r
def= arg min

θ∈Θ
Er log

1
p(x|θ) .

Note that we have Er∇ log p(x|θ̃) = 0, where we let ∇
denote the gradient with respect to θ. Define a set of

probability densities as S
def= {r : θ̃r ∈ Θc}. We will

consider the relative redundancy for pair (S,C) (actu-
ally we must consider the problem for (S′, C) where S′

is a certain subset of S).
Let Kn be a compact subset of Θ such that K◦

n ⊃ Θc

(n ≥ 0), Kn ⊂ K◦
0 (n ≥ 1) and Kn slowly shrinks to

Θc as n →∞.
Now, we describe the conditions under which we

construct the minimax code. Define a matrix Î as

Î(x, θ) def=
∂ log p(x|θ)

∂θi

∂ log p(x|θ)
∂θj

and Î(xn, θ) def= (1/n)
∑n

t=1 Î(xt, θ). We assume
Eθ Î(x, θ) = J(θ). Define a d2-dimensional vector
valued random variable V (x, θ) as Vdj+i(xn, θ) def=
Îij(xn, θ) − Jij(θ). Note that EθV (x, θ) = 0. De-

fine I(r, θ) def= Er Î(x, θ). In particular, we let I(r) =
I(r, θ̃r). Note that I(p(·|θ)) = J(θ).

Define a d2-dimensional vector valued random vari-
able

Udj+i(xn, θ) def= Ĵij(xn, θ)− Jij(θ),

where Ĵ(xn, θ) is the empirical Fisher information:

Ĵij(xn, θ) def= − 1
n

n∑
t=1

∂2 log p(xt|θ)
∂θi∂θj

.

Condition 1 Let D = [−b, b]d
2

for a certain b > 0.
For a certain C0 > 0, the following holds.

∀(u, v) ∈ D2, ∀θ ∈ K0, (1)
Eθ exp(v · V (x, θ) + u · U(x, θ)) < C0.

Note that the above implies the following for any γ > 0.

Eθ(|V (x, θ)|γ + |U(x, θ)|γ)ev·V (x,θ)+u·U(x,θ) < C(γ).

We consider the class of sources S′ which satisfies the
following.

Condition 2 For a certain C0, the following holds.

∀r ∈ S′, Er(|U(x, θ)|2 + |V (x, θ)|2) < C0. (2)

Under Condition 1, we define an extended class C̄:

C̄
def= {pe(·|θ, u, v) =

p(·|θ)eu·U(·,θ)+v·V (·,θ)

λ(θ, u, v)
: θ ∈ K0, (u, v) ∈ D2},

where λ(θ, u, v) def= Eθe
u·U(x,θ)+v·V (x,θ). This is the

normalization constant. Note that C̄ is (d + 2d2)-
dimensional and the original class C is smoothly em-
bedded in the enlarged class C̄.

Let mKt be Bayes mixture
∫

Kt
p(·|θ)wKt(θ)dθ with

Jeffreys prior: wKt(θ)
def=

√
det J(θ)/CJ(Kt).

Let ξ
def= (θ, u, v). The following is our new code.

mn(xn) def= (1− εn)mKn(xn) + εn

∫
pe(xn|ξ)w(ξ)dξ,



where w(ξ) is some smooth prior with infξ w(ξ) > 0
and εn > 0 approaches to 0 at polynomial rate.
Remark: If X is a finite set, we can use the class P
as the enlarged class C̄, which is finite dimensional.

We have the following theorem, which claims that
the above mn is asymptotically minimax for relative
redundancy.

Theorem 1 Under Conditions 1 and 2, and certain
regularity conditions for C, the following holds.

lim sup
n→∞

(Rn(mn, S′, C)− d

2
log

n

2πe
) ≤ log CJ(Θc).

We note about the lower bound. Whenever S′ ⊇ C,
Rn(q, C,C) ≤ Rn(q, S′, C) holds. Hence, a lower
bound for the minimax redundancy is that for the mini-
max relative redundancy and we can see that the above
upper bound matches the lower bound.

Outline of the Proof

We make a case argument about r. Let an = n−1/4.
There are two cases: (i) |ErU(x, θ̃r)| + |ErV (x, θ̃r)| ≤
2an holds. (ii) |ErU(x, θ̃r)| ≥ an or |ErV (x, θ̃r)| ≥ an

hold.
We let S

(i)
n and S

(ii)
n respectively denote the sets of

r ∈ S′ which satisfies the cases (i) and (ii). We use the
notation ln = (1/n)∇ log p(xn|θ̃r).

First, consider the case (i). In this case, we follow
the argument used in [5, 6]. We have |Ĵ(xn, θ̃)−J(θ̃)| =
|U(xn, θ̃)| ≤ 4an = o(1) with high probability. Hence
the Laplace integration about mKn works. The follow-
ing holds with high probability, where we let δθ = θ−θ̃.

1
n

log
p(xn|θ)
p(xn|θ̃) = δθtln − δθtĴ(xn, θ′)δθ

2
+ O(|δθ|3)

= δθtln − δθtJ(θ̃)δθ
2

+ O(|δθt|3),

where θ′ = λθ + (1 − λ)θ̃ for a certain λ ∈ [0, 1]. Let
h

def= (J(θ̃))−1ln and J̃ denote J(θ̃), then we have

1
n

log
p(xn|θ)
p(xn|θ̃)

= − (δθ − h)tJ̃(δθ − h)
2

+
htJ̃h

2
+ O(|δθ|3)

= − (δθt − h)tJ̃(δθt − h)
2

+
ltnJ̃−1ln

2
+ O(|δθ|3).

Hence we have

p(xn|θ)
p(xn|θ̃) = e−n((θ−θ̃−h)tJ̃(θ−θ̃−h)−ltnJ̃−1ln+O(|δθ|3))/2.

Note that |h| ≤ log n/n with high probability. Evalu-
ating the integration

∫
p(xn|θ)wKn(θ)dθ/p(xn|θ̃) with

contribution from the neighborhood of θ̃ + h, we have

mKn(xn)
p(xn|θ̃) ∼ enltnJ̃−1ln/2(2π)d/2

CJ(Kn)nd/2

with high probability. Hence, we have

mn(xn)
p(xn|θ̃) & (1− εn)enltnJ̃−1ln/2(2π)d/2

CJ(Kn)nd/2
.

Hence, the following holds with high probability.

log
p(xn|θ̃)
mn(xn)

. d

2
log

n

2π
+ log CJ(Θc)− nltnJ̃−1ln

2
.

Noting Erlnltn = I(r)/n, it is possible to show

Er log
p(xn|θ̃)
mn(xn)

(3)

. d

2
log

n

2π
+ log CJ (Θc)− tr(I(r)J̃−1)

2
.

When r ∈ S
(i)
n , we have |I(r)− J(θ̃)| = |ErV (xn, θ̃)| ≤

2an. Hence,

sup
r∈S

(i)
n

(−tr(I(r)J̃−1)/2) ∼ −d/2. (4)

Therefore, we have

sup
r∈S

(i)
n

Er log
p(xn|θ̃)
mn(xn)

. d

2
log

n

2πe
+ log CJ(Θc). (5)

Now, we consider the case (ii). We have |U(xn, θ̃)|+
|V (xn, θ̃)| ≥ an/2 with high probability. Let

(ũ, ṽ) =
αan(U(xn, θ̃), V (xn, θ̃))√
|U(xn, θ̃)|2 + |V (xn, θ̃)|2

,

where α is a certain small positive number. Then,

pe(xn|θ̃, ũ, ṽ)
p(xn|θ̃) =

en(ũ·U(xn,θ̃)+ṽ·V (xn,θ̃))

(Λ(θ̃, ũ, ṽ))n
≥ eC1na2

n (6)

holds with high probability. We can easily show that
∫

pe(xn|ξ)w(ξ)dξ

pe(xn|θ̃, ũ, ṽ)
≥ C2

nd+2d2 .

Therefore,

εn

∫
pe(xn|ξ)w(ξ)dξ

p(xn|θ̃)

=
εn

∫
pe(xn|ξ)w(ξ)dξ

pe(xn|θ̃, ũ, ṽ)
pe(xn|θ̃, ũ, ṽ)

p(xn|θ̃)

≥ C2εn exp(C1na2
n)

nd+2d2 =
C2εn exp(C1

√
n)

nd+2d2

holds with high probability. Hence for r ∈ S
(ii)
n ,

Er log
mn(xn)
p(xn|θ̃) ≥ Er log

εn

∫
p(xn|ξ)w(ξ)dξ

p(xn|θ̃) →∞

holds. Together with (5), this implies

sup
r∈S′

Er log
p(xn|θ̃)
mn(xn)

≤ d

2
log

n

2πe
+ log CJ(Θc) + o(1).



4 Discussion

4.1 Semi Universality

The minimax codes have the property of ‘semi univer-
sality’ ([7]). Let us take the code based on the Bayes
mixture with the Jeffreys prior mKn , which is asymp-
totically minimax for the redundancy Rn(q, C, C). Its
expected code length per source symbol approaches to
the entropy rate of the true source, when the true
source r belongs to the class C. This dose not hold,
when r is not an element of C. For mKn , (3) holds as
an (approximated) equality rather than an inequality,
i.e. we have

Er log
p(xn|θ̃)

mKn(xn)
=

d

2
log

n

2π
+ O(1).

Hence, we have

lim
n→∞

1
n

Er log
1

mKn
(xn)

= lim
n→∞

1
n

Er log
1

p(xn|θ̃)
= Er log

1
p(x|θ̃) = H(r) + D(r|p(·|θ̃)),

where H denotes differential entropy rate and D de-
notes the Kullback Leibler divergence. Hence, the ex-
pected code length by mKn per source symbol does not
converge to the entropy rate. This property is called
as ‘semi universality’.

Concerning mn, when r 6∈ C, the relative redun-
dancy is negative. Hence, the code length by mn is
shorter than that by p(·|θ̃), but the expected code
length per source symbol does not converge to the en-
tropy rate.

4.2 Necessity of Enlarging Model

We have succeeded to construct the asymptotically
minimax code for the relative redundancy by enlarging
the class of codes. Here, we consider why this enlarge-
ment is needed. Two information matrices, Ĵ(xn, θ̃)
and I(r) are important. When the true source r be-
longs to the class of codes C, then both I(r) and the
expectation of Ĵ(xn, θ̃) equal the Fisher information
J(θ̃). Then, the asymptotics (3) and (4) hold. How-
ever, if r is displaced from C, then I and Ĵ is different
from J with high probability. This spoils (3) and (4).
However in that case, the contribution from enlarged
class works well, utilizing Î − J or Ĵ − J . When we
treat not the relative redundancy but the regret, then
we do not have to care the asymptotic (4). Therefore,
the enlargement for the regret uses Ĵ − J alone.

Finally, the authors would like to briefly note about
the differential geometrical interpretation (see [1, 2]).
The quantity Ĵ − J relates to exponential curvature of
the class C. When Ĵ(xn, θ̂)− J(θ̂) always equals zero,
then C is an exponential family. Also, the quantity
Î − Ĵ relates to the mixture curvature of the class C.
When Î(xn, θ̂)− Ĵ(xn, θ̂) always equals zero, C is a fi-
nite mixture model. Since our enlargement is spanned

by Ĵ − J and Î − J , this is equivalent to the enlarge-
ment spanned by Ĵ − J and Î − Ĵ . Therefore, our en-
largement is to the direction of both exponential and
mixture curvatures.
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