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Properties of Jeffreys Mixture for Markov Sources

Jun-ichi Takeuchi ∗ Tsutomu Kawabata † Andrew R. Barron ‡

Abstract: We discuss the properties of Jeffreys mixture for general FSMX model (a certain
class of Markov sources [11]). First, we show that modified Jeffreys mixture asymptoti-
cally achieves the minimax coding regret [7], where we do not put any restriction on data
sequences at all. This is extension of results in [13, 15]. Then, we give an approxima-
tion formula for the prediction probability of Jeffreys mixture for FSMX models (review
of the result in [10, 19]). By this formula, it is revealed that the prediction probability by
Jeffreys mixture for the first order Markov chain with alphabet {0, 1} is not of the form
(k + α)/(n + β) (n is data size, k is number of occurrences of ‘1’). Moreover, we evaluate
by simulation the regret of our approximation formula for the first order Markov chain and
show that the prediction strategy using our approximation formula gives smaller coding
regret than the one using Laplace estimator.

1 Introduction

We discuss the properties of Jeffreys mixture for gen-
eral FSMX model (FSMX model is a certain class of
Markov sources [11]) in the problem of prediction and
universal coding.

First, we show that slightly modified Jeffreys mix-
ture asymptotically achieves the minimax regret [7],
where we do not put any restriction on data sequences
at all. This is an extension of results in [13, 15] and
provide evaluation of stochastic complexity defined by
Rissanen [6]. The regret is defined as the difference
of the loss incurred and the loss of an ideal coding or
prediction strategy for each sequence. Xie & Barron
treat the all sequences with finite alphabet in multi-
nominal Bernoulli model and show that the modified
Jeffreys mixtures, one of which is shown to be asymp-
totically minimax in terms of redundancy (expected
regret) [14], achieve the minimax regret asymptotically
[15]. Takeuchi & Barron [9] show that the similar mix-
tures are minimax for (i.i.d.) exponential families and
certain near exponential families that permit depen-
dence, but their bounds are valid only for the restricted
set of sequences so that the MLE locate in a certain
compact set interior to the parameter space (an excep-
tion is one-dimensional exponential family). Our result
is a generalization of [15] to Markov models and that
of [9] to the set of all sequences. (Strictly speaking, the
first order Markov chain with alphabet size 2 is treated
in [13]). Concerning Markov models, Atteson [1] ob-
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tains pointwise bound on redundancy of the Jeffreys
mixture. Also, Gotoh et. al. [3] give an upper bound
on the regret, which holds almost surely.

As well known, the Jeffreys mixture for Bernoulli
model induces Laplace estimator. While Laplace es-
timator is in very simple form, Jeffreys mixture for
FSMX model is not, even when the model is first order
Markov chain. Hence, we give an approximation for-
mula for the prediction probability of Jeffreys mixture
for the FSMX models (review of the result in [10, 19]).
This is a certain extension of the approximation for-
mulas of the Bayes estimator for (i.i.d.) exponential
families, which Takeuchi showed [8]. We can see the
behavior of Jeffreys mixture by this formula. In par-
ticular, it is revealed that the prediction probability by
Jeffreys mixture for the first order Markov chain with
alphabet {0, 1} is not of the form (k + α)/(n + β) (n
is data seize, k is number of occurrences of ‘1’). More-
over, we evaluate by simulation the regret of our ap-
proximation formula for the first order Markov chain
and show that the prediction strategy using our ap-
proximation formula gives smaller coding regret than
the one using Laplace estimator.

2 Preliminaries

We review the definition of FSMX model [11]. Let
alphabet X be a set {0, 1, ..., k}. Define X ′ def= X \{0}.
Let T be a subset of X ∗ def= {λ} ∪ X ∪ X 2 ∪ ..., where
λ denotes a null sequence. Assume that for all s ∈ T ,
any postfix of s belongs to T (e.g., the postfixes of x1x2

are x1x2, x2 and λ ). Such set T is called a context
tree. For a context tree T , define ∂T as

∂T
def= {xs : x ∈ X , s ∈ T} ∪ {λ} \ T.



It can be shown that ∂T is a complete postfix set of
X , i.e. no element of ∂T is a postfix of another element
and their length satisfies Kraft inequality with equality.
For example, let Te = {λ, 0} (X = {0, 1} ), then we
have ∂Te = {1, 10, 00}, which is a complete postfix
set. For s ∈ X ∗, we let τ(s) denote an element of ∂T

which matches a postfix of s. Let d
def= maxs∈∂T |s|

(|s| is length of s). When |s| ≥ d, τ(s) exists and is
unique. For example, in the case of Te in the above, we
have τ(11) = 1, τ(10) = 10, τ(100) = 00, τ(101) = 1,
τ(000) = 00 and τ(001) = 1.

Let ηx
s denote the probability that x is generated

at the context s. We let ηs denote a k-dimensional
vector (η1

s , η2
s , ..., ηk

s ) and η a k|∂T |-dimensional vector
(η1

s1
, , ..., ηk

s1
, η1

s2
, , ..., ηk

s2
, , ..., η1

s|∂T | , , ..., η
k
s|∂T |). Here, we

let η0
s

def= 1−∑
x∈X ′ η

x
s . Define the parameter space as

Hs
def= {ηs : ∀x ∈ X ′, ηx

s ≥ 0 ∧ ∑
x∈X ′ η

x
s ≤ 1} and

H = H(T ) def=
∏

s∈∂T Hs.
We let xn

m denote a sequence xmxm+1...xn (m ≤ n)
and xn a sequence xn

1 . We assume that we have an ini-
tial sequence x0

−d+1 in advance. We denote the initial
context τ(x0

−d+1) by s0. Let nx
s denote the number of

occurrences of x at the context s in the sequence xn

and define ns
def=

∑
x∈X nx

s . We denote the probability
mass function for the sequence xn by p(xn|η, x0

−d+1).
We define a class of Markov sources as

S(T ) def= {p(·|η, ·) : η ∈ H(T )}.
Then, S(T ) is referred to as a tree model [11, 4]. Fur-
ther, we assume that τ(sx) for any s ∈ ∂T and any
x ∈ X is determined, even if |sx| < d, i.e. τ defines a
state transition function. When this condition is sat-
isfied, a tree model is referred to as an FSMX model
[11, 4]. Note that S(Te) is an example of FSMX model.
In this paper we treats an FSMX model only.

We usually omit x0
−d+1 from p(xn|η, x0

−d+1) and
simply denote as p(xn|η). Then, we have

log p(xn|η) =
∑

s∈∂T, x∈X
nx

s log ηx
s , (1)

where we let ‘log’ denote natural logarithm. Let η̂ =
η̂(xn) denote MLE (maximum likelihood estimate) of
η given xn, then we have η̂x

s = nx
s/ns.

Let Wn be a subset of Xn+d. Let P(Wn) denote
the set of all probability mass functions on Wn. The
maximum regret of q ∈ P(Wn) with respect to a family
of probability mass function S = {p(·|η) : η ∈ H} and
Wn (denoted by r̄(q,Wn)) is defined as

r̄(q, Wn) def= sup
xn
−d+1∈Wn

(log
1

q(xn|x0
−d+1)

− log
1

p(xn|η̂)
).

The minimax regret with respect to a family of prob-
ability mass function S and a set of the sequences Wn

(denoted by r̄(Wn)) is defined as

r̄(Wn) def= inf
q∈P(Wn)

r̄(q, Wn).

The regret r̄(q, Wn) is the difference between the code
length based on q and the minimum of the codelength
log(1/p(xn|η)) achieved by distributions in the family.
Also, log(1/q(xn|xn

−d+1))−log(1/p(xn|η)) is the sum of
the incremental regret of prediction log(1/q(xi+1|xi

−d+1))
− log(1/p(xi+1|xi, η)).

The maximin regret for set Wn (denoted by r
¯n(Wn))

is defined as

r
¯n(Wn) def= sup

q∈P(Wn)

inf
r∈P(Xn+d)

Eq log
p(xn|η̂)

r(xn|x0
−d+1)

.

It is known that r̄n(Wn) = r
¯n(Wn) holds [7, 15].

We define Jeffreys prior as wJ(η) def=
√

det J(η)/CJ ,
where J is Fisher information matrix with respect to
η and CJ

def=
∫

H

√
detJ(η)dη.

Now we introduce Fisher information and empiri-
cal Fisher information. Empirical Fisher information is
the Hessian of −(1/n) log p(xn|η). We denote its com-
ponent with respect to ηx

s and ηy
t , by Ĵ(s,x)(t,y)(xn, η).

Then, we can derive from (1),

Ĵ(s,x)(t,y)(xn, η) = δstp̂s(
δxyp̂x

s

(ηx
s )2

+
p̂0

s

(η0
s)2

), (2)

where we let p̂s
def= ns/n and p̂x

s
def= nx

s/ns . Also δxy

and δst denote Kronecker’s delta. Fisher information
is denoted as

J(s,x)(t,y)(η) = lim
n→∞

EηĴ(s,x)(t,y)(xn, η)

= δstpc(s|η)(
δxy

ηx
s

+
1
η0

s

), (3)

where pc(s|η) is the stationary probability of the state
s determined by p(·|η), Eη denote the expectation with
respect to p(·|η).

Let D(α)(ηs)
def=

∏
x∈X (ηx

s )−(1−α) (Dirichlet func-
tion), then we have

wJ(η) =
∏

s∈∂T pc(s|η)k/2D(1/2)(ηs)
CJ

.

We define another prior density as

w(α)(η) def=
∏

s∈∂T D(α)(ηs)
(C(α))|∂T | ,

where C(α)
def=

∫
D(α)(ηs)dηs. Note that w(α)(η)/wJ(η)

→ ∞ holds as η approaches the boundaries of H, if
0 < α < 1/2 holds.

3 Results

3.1 Minimax Regret

We define a modified Jeffreys prior as

wn
def= (1− n−b)wJ + n−bw(α),



where 0 < α < 1/2 is assumed. We let mn denote
the mixture with respect to wn. We can show the
following.

Theorem 1 There exists b > 0 such that the following
holds.

r̄(mn,Xn) =
|∂T |k

2
log

n

2π
+ log CJ + o(1) (4)

where o(1) converges to 0 as n goes to infinity.

Outline of the proof is given in Section 5.
Remark 1: For the lower bound, it is possible to

show directly that the lower bound on the maximin re-
gret matches the above upper bound. Further, we can
show that the Jeffreys mixture without modification is
asymptotically maximin [18]. Also, Rissanen’s result
[6] contains equivalent lower bound (we cannot apply
it for the upper bound).

Remark 2: This is a generalization of the result
about the first order Markov chains with alphabet size
2 in [13]. The proof is not its straightforward extension.

Remark 3: The similar upper bound on minimax
redundancy (expected regret) for Markov chains is ob-
tained in [1], but it is not uniform but pointwise. In
[6, 9, 18] also, upper bounds of the same form on re-
gret are obtained for more general models, but they
hold under the restriction on the sequences that MLE
is located in a compact set included in the interior of
the parameter space (an exception is one-dimensional
exponential family in [9]). Under that condition, we
can show that Jeffreys mixture is minimax, however
when MLE goes near the boundaries, we need the help
from the second term of wn, which has higher density
near the boundaries than Jeffreys prior.

Let p(xn+1|xn, η) def= p(xn+1|η)/p(xn|η). The pre-
diction probability based on Bayes mixture with prior
w is given by pw(xn+1|xn) =

∫
p(xn+1|xn, η)w(η|xn)dη

=
∫

η
xn+1

s(xn
−d+1)

w(η|an)dη, where w(η|xn) denotes the pos-
terior density of η. For the prior wn we must use it
as mn(xt|xt−1) (t ≤ n). This implies that we have to
know the length of the sequence in advance, in order to
use mn for the prediction, while the Laplace estimator
doesn’t depend on the total lenght of the sequennce.
That is, Theorem 1 means that mn, which is obtained
by slightly modifying the Jeffreys mixture, is the best
prediction strategy, when we can know the lenght of
the sequence in advance.

3.2 Approximation Formula

As mentioned above, the Jeffreys mixture is nearly best
strategy. However, it is hard to calculate in general.
We give a way to approximate it. For that purpose, we
introduce the another parameter θ than η. Note that
p(xn|η) is rewritten as follows:

p(xn|η) =
∏

s∈∂T

exp(ns(
∑

x∈X ′
θx

s η̂x
s − ψ(θs))),

where we let θx
s = log(ηx

s /η0
s) and ψ(θs) = − log η0

s =
log(1 +

∑
x∈X ′ exp θx

s ). Note that (∂/∂θx
s )ψ(θs) = ηx

s

holds. We let Θs
def= {θs(ηs) : ηs ∈ H◦

s }, then Θs =
<|X ′| holds. Let Θ(T ) def=

∏
s∈∂T Θs = <|∂T |·|X ′|. It is

known that the map ηs 7→ θs on H◦
s is one to one and

analytic (see [2]).
The following theorem gives an efficient method to

approximate the Jeffreys mixture, where we let η̃x
s

def=∫
p(x|xn, η)wJ(η|xn)dη and η̄x

s
def= (nx

s +0.5)/(ns+(k+
1)/2).

Theorem 2 Let K be a compact set included in the
interior of H and n0 be an arbitrary natural number.
Then,

η̃x
s − η̄x

s −
1

ns + (k + 1)/2
∂ log(wJ(η)/w(1/2)(η))

∂θx
s

∣∣∣∣
η=η̂

= O(
√

log n

n
√

n
)

holds, uniformly for all sequences x−d+1...x1x2... such
that η̂ ∈ K holds for all n ≥ n0.

We omit the proof. See [10, 19].
Remark: Actually, Theorem 2 can be extended to the
mixture with general prior density under appropriate
conditions. Then, if we replace wJ with Dirichlet prior
with α = 1/2 (w(1/2)), the third term of the left hand
side of (5) vanishes. In that case, Theorem 2 yields
η̃ ∼ η̄ and coincides with the well known fact that
η̃ = η̄ holds when the prior is w(1/2).

From Theorem 2, we can obtain more explicit ap-
proximation formula. Note that

log
wJ(η)

w(1/2)(η)
=

k

2

∑

t∈∂T

log pc(t|η) + C1

and
∂

∂θx
s

=
∑

y∈X ′

∂ηy
s

∂θx
s

∂

∂ηy
s

=
∑

y∈X ′
ηy

s (δxy − ηx
s )

∂

∂ηy
s
.

Hence, we have

η̃x
s − η̄x

s −
∑

y∈X ′, t∈∂T

kη̂y
s (δxy − η̂x

s )
2ns + k + 1

∂ log pc(t|η)
∂ηy

s

∣∣∣∣
η=η̂

= O(
√

log n

n
√

n
).

It is known that the Jeffreys mixture for the i.i.d.
case is asymptotically maximin in terms of regret and
induces Laplace estimator, which is used in CONTEXT[5]
and CTW method[12]. We compare our approxima-
tion formula for wJ with the prediction strategy with
Laplace estimator.

Let X = {0, 1} and ∂T = {0, 1}. Suppose that
xn equals 0. By Theorem 2, the approximation of the
Jeffreys mixture for this case is given by

η̃1
0 ∼

n1
0 + 0.5
n0 + 1

+
1

n0 + 1

(1− η̂1
0

2
− η̂1

0(1− η̂1
0)

η̂1
0 + η̂0

1

)
, (5)



Note that this depends on not only η̂1
0 but η̂0

1 and that
the difference between η̃1

0 and the Laplace estimator is
of order Ω(1/n0) (negation of o(1/n0)).

4 Simulation

We evaluated the regret of the strategy with η̃ (de-
noted as qA) and the strategy with Laplace estimator
(denoted as qL). Actually, we evaluated a quantity
r̃(q, xn

−d+1)
def= log(p(xn|η̂)/q(xn|x0

−d+1)) − log(n/2π).
Since value of r̄(q, xn

−d+1) depends on xn
−d+1, we gener-

ated a number of xn
−d+1 using pseudo random number

with respect to p(xn|η). Table 1 shows a part of our
results, where the first row and the first column in-
dicate the values of η1

0 and η0
1 respectively, which we

generate xn
−d+1 with respect to. Each cell except them

indicates average value of r̃(q, xn
−d+1). The upper one

is the average of r̃(qA, xn) and the lower one is that of
r̃(qL, xn), where the number of trials is 100. Note that
p(xn|η) is i.i.d., when η1

0 = 1 − η0
1 holds. One might

expect that qL would perform better than qA for these
cases, but it didn’t.

0.1 0.3 0.5 0.7 0.9

0.1 qA 0.99 1.16 1.30 1.35 1.39

qL 1.60 1.45 1.30 1.18 1.09

0.3 1.12 1.17 1.26 1.30

1.60 1.56 1.50 1.45

0.5 1.22 1.29 1.35

1.60 1.58 1.55

0.7 1.34 1.40

1.60 1.59

0.9 1.44

1.60

Table 1: Average of regret (n = 10000)

Note that 1.296 ≤ log CJ ≤ 1.305 holds. The regret
of qA is close to this lower bound.

5 Outline of Proof of Theorem 1

The main tool for the proof is the Laplace integration,
by which we have the following asymptotics:
∫

p(xn|η)wJ(η)
p(xn|η̂)

∼
√

det(J(η̂))

CJ

√
det(Ĵ(xn, η̂))

(2π)k|∂T |/2

nk|∂T |/2
, (6)

where Ĵ(xn, η) is the empirical Fisher information. When
the model is an exponential family, Ĵ(xn, η̂) = J(η̂)
holds. Then for exponential families, our task is to
control the the convergence of (6) only, but the FSMX
model is not exponential type. However, it is known
that FSMX model converges to an exponential family,
when the sample size goes to infinity (see [16]). Hence,

for the FSMX model, the empirical Fisher information
converges to the Fisher information:

|Ĵ(xn, η̂)− J(η̂)| → 0 (7)

If we restrict the sequence xn so that MLE η̂(xn) be-
longs to a compact set K included in the interior of
H, then we can prove that the convergence of (6) and
(7) is uniform for those sequences, but it is impossible
without such restriction. However, we can moderate
it, i.e. we can prove the uniform convergence for the
sequence belonging to H(2n−a)(T ). Here, we let

H(ε) = H(ε)(T ) def= {η : ∀s ∈ ∂T, ∀x ∈ X , ηx
s > ε}

and a is a certain small positive number. For the se-
quences which do not belong to H(2n−a), we obtain
smaller regret than the minimax value with the help
from the second term of wn, n−bw(α)(η). For the proof,
we use Lemma 4 of [15].

In particular, the problem about (7) makes the
proof about the interior region harder (this problem
does not exist for multinomial Bernoulli model [15] and
one-dimensional exponential family [9]). Hence in this
paper, we concentrate on the problem about the ratio
of the determinant of empirical Fisher information to
that of Fisher information. Comparing (2) with (3),
we have only to evaluate the ratio p̂s/pc(s|η̂) (s ∈ ∂T ),
for which we can show the following Lemma.

Lemma 1 Let r = d(|∂T |−1). There exists a constant
C1 > 0, such that the following holds.

∀n ≥ 1, ∀ε : nεd > 2, ∀xn, s0 : η̂ ∈ H(2ε),

ns > nεd − 1 (8)

and | log
p̂s

pc(s|η̂)
| < C1

nεr+d
. (9)

Remark: When the model is the first order Markov
chain with alphabet {0, 1}, the proposition which cor-
responds to Lemma 1 is easy to show, since the explicit
forms of pc(s|η) are very simple.

Let εn = n−a, where we assume (1−ad)/2 > a and

0 < a < (1/2)min{ 1
2r + d

,
1

2 + d
}.

When η̂ ∈ H(2εn) holds, we have nεr+d
n > n1−(r+d)/(2r+d)

→ ∞ as n goes to infinity. Hence, we have p̂s/pc(s|η̂)
→ 1 uniformly for xn

−d+1 : η̂ ∈ H(2n−a). Hence, Lemma 1
implies that empirical Fisher information converges to
Fisher information, uniformly for xn

−d+1 : η̂ ∈ H(2n−a).
In the remaining of this section, we describe the

proof of Lemma 1. Recall that nx
s denotes the number

of generation of x at the state s (∈ ∂T ) in the sequence
xn = x1x2...xn. Further, for every t, u ∈ ∂T , we let nu

t

denote the number of transition from the state t ∈ ∂T
to the state u ∈ ∂T in the sequence xn = x1x2...xn.
The equation nx

s = n
τ(sx)
s holds.



Similarly, we let ∀x ∈ X , ∀s ∈ ∂T, η
τ(sx)
s

def= ηx
s .

We define
Ds

def= {τ(sx) : x ∈ X}.
The set Ds consists of the states which can be reached
by one transition from the state s. Then for all s ∈ ∂T
and for all s′ ∈ Ds, ηs′

s is defined. We can define the
state transition probability matrix as

Πs′s =
{

ηs′
s , when s′ ∈ Ds,

0, otherwise.
(10)

First, we will show the following.

Proposition 1 If ηx
t > ε holds for each t ∈ ∂T and

each x ∈ X , then pc(t|η) > εd holds.

Proof: Note that the probabilities pc(t|η) (t ∈ ∂T )
satisfy the following linear equations:

pc(t|η) =
∑

t′∈∂T

Πtt′pc(t′|η). (11)

For each t ∈ ∂T and x ∈ X , we have ηx
t > ε by the

assumption. Let yd = t. For each pair (t, t′) ∈ (∂T )2,
τd(t′yd) = t holds. Further, for all yd ∈ X d and all
i ∈ {0, 1, ..., d − 1}, η

yi+1

τd(t′yi) > ε holds. This implies
that each element of Πd is larger than εd, i.e. each
pc(t|η) is larger than εd. Q.E.D.

Lemma 2 There exist certain positive number C1, such
that

∀s ∈ ∂T, ∀t ∈ ∂T, ∀x ∈ X ′, ∀ε > 0, ∀η ∈ H(ε),
∣∣∣∂ log pc(s|η)

∂ηx
t

∣∣∣ ≤ C1

εr

holds, where r = d(|∂T | − 1).

Outline of Proof: We renumber the state as ∂T =
{s1, s2, ...sq}, where we let q = |∂T |. Define a matrix
A as

Aij = Πd
sisj

and a vector µ as µ = (pc(s1|η), ..., pc(sq|η))T . (Note
that when η ∈ H(ε), Aij > εd holds.) Then, we have

(I −A)µ = 0

(I denotes the unit matrix). Let ∆ij be the cofactor
with respect to the (i, j)-component of I−A. By some
manipulation, we have

pc(si|η) = µi =
∆1i∑
j ∆1j

.

Note that µi is a rational function of η. Further, we
can prove the following:

∀η ∈ H(ε), ∀s ∈ ∂T, ∆1i ≥ εd(q−1).

We have

∂ log pc(s|η)
∂ηx

t

=
1

∆1i

∂∆1i

∂ηx
t

− 1∑
j ∆1j

∂
∑

j ∆1j

∂ηx
t

.

Note that the derivative of ∆ij is bounded upper by a
certain constant. Therefore, we have

∀t ∈ ∂T, ∀x ∈ X ′, ∀η ∈ H(ε),
∣∣∣∂ log pc(s|η)

∂ηx
t

∣∣∣ ≤ C

εd(q−1)
.

Q.E.D.
Now, we can prove Lemma 1.

Proof of Lemma 1: Let s0 denote the state deter-
mined by x0

−d+1 (initial state) and se the state τ(xn).
First, we treat a special case in which s0 = se holds.
In this case, we have

∀s ∈ ∂T,
∑

t∈∂T

nt
s =

∑

t∈∂T

ns
t , (12)

since the number of all transition from the state s
equals the number of all transition to the state s. Hence,
we have

∑

t∈∂T

η̂s
t p̂t =

∑

t∈∂T

ns
t

nt

nt

n
=

∑

t∈∂T

ns
t

n
=

ns

n
= p̂s.

This implies p̂s = pc(s|η̂).
When s0 6= se, let xn+α

n+1 be a minimum path from
the state se to s0 (α does not exceed d). By adding a
sequence xn+α

n+1 to the sequence xn, we have τ(xn+α) =
s0. Let p̃s denote the relative frequency of the state
s in xn+α and η̃t

s the maximum likelihood estimate of
ηt

s given xn+α. Then, we have p̃s = pc(s|η̃). Let φt
s

denote the number of transition from the state s to
the state t in the sequence xn....xn+α. Here, φt

s = 0
or 1, since xα

n+1 is a minimum pass from se to s0. Let
φs =

∑
t φt

s. We have η̃t
s = (nt

s +φt
s)/(ns +φs). Hence

η̃t
s ≥

nt
s

ns + 1
=

η̂t
s

1 + 1/ns
≥ η̂t

s

2
> ε,

where we use the fact that ns =
∑

t nt
s ≥ 1 (if nt

s = 0
holds for all t ∈ ∂T , then we have ns ≤ 1 for all s ∈
∂T ).

By (a) of Proposition 1, we have p̃s = pc(s|η̃) > εd.
Hence, ns > nεd − 1 holds. This is (8).

Hence, we have

η̃t
s ≥

η̂t
s

1 + 1/ns
>

η̂t
s

1 + 1/(nεd − 1)
.

Hence,

η̂t
s < η̃t

s(1+
1

nεd − 1
) ≤ η̃t

s+
1

nεd − 1
< η̃t

s+
2

nεd
= η̃t

s+
2

nεd
.

Also, we have η̃t
s < nt

s + 1/ns = η̂t
s + 1/n. Therefore,

we have
|η̃t

s − η̂t
s| < 2/nεd.



By Taylor’s theorem, we have

log pc(s|η̃)− log pc(s|η̂)

=
∑

t∈∂T, x∈X ′

∂ log pc(s|η)
∂ηx

t

∣∣∣∣
η=h

(η̃x
t − η̂x

t ),

where h is a point between η̃ and η̂. Since η̃, η̂ ∈
H(ε)(T ), h ∈ H(ε)(T ) holds. Hence by Lemma 2, we
have ∣∣∣∣∣

∂ log pc(s|η)
∂ηx

t

∣∣∣∣
η=h

∣∣∣∣∣ ≤
C

εr
.

Hence, we have

−2Cd|∂T |
nεr+d

≤ log
pc(s|η̃)
pc(s|η̂)

≤ 2Cd|∂T |
nεr+d

. (13)

Since p̃s = (ns + φs)/(n + α) holds, we have

p̃s ≥ ns

n + α
=

p̂s

1 + α/n
≥ p̂s

1 + d/n

and

p̃s ≤ ns + 1
n

= p̂s +
1
n

= p̂s(1 +
1

np̂s
) = p̂s(1 +

1
ns

).

Hence,
1

1 + 1/ns
≤ p̂s

p̃s
≤ 1 +

d

n
,

i.e.
− 1

ns
≤ log

p̂s

p̃s
≤ d

n

holds. Together with (13) and p̃s = pc(s|η̃), we have

− C2

nεr+d
< −2C1d|∂T |

nεr+d
− 1

ns

< log
p̂s

pc(s|η̂)
≤ 2C1d|∂T |

nεr+d
+

d

n
<

C2

nεr+d
,

where we use (8) and let C2 = 2max{2C1d|∂T |, d}.
Q.E.D.

6 Concluding Remark

We have determined the minimax regret for FSMX
models without any restriction on the sequences, us-
ing modified Jeffreys mixtures. The obtained regret is
of the same form as that for the multinominal Bernoulli
models. Also, we have reviewed the approximation for-
mula of Jeffreys mixture for FSMX models. Its compu-
tational cost is O(|∂T |3). This is not low enough, if we
try to use it in CTW method or CONTEXT algorithm.
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